Partially penalized immersed finite element methods for parabolic interface problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems

We present partially penalized immersed finite element methods for solving parabolic interface problems on Cartesian meshes. Typical semi-discrete and fully discrete schemes are discussed. Error estimates in an energy norm are derived. Numerical examples are provided to support theoretical analysis.

متن کامل

Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems

This article presents new immersed finite element (IFE) methods for solving the popular second order elliptic interface problems on structured Cartesian meshes even if the involved interfaces have nontrivial geometries. These IFE methods contain extra stabilization terms introduced only at interface edges for penalizing the discontinuity in IFE functions. With the enhanced stability due to the ...

متن کامل

Superconvergence of partially penalized immersed finite element methods

The contribution of this paper contains two parts: first, we prove a supercloseness result for the partially penalized immersed finite element (PPIFE) methods in [T. Lin, Y. Lin, and X. Zhang, SIAM J. Numer. Anal., 53 (2015), 1121–1144]; then based on the supercloseness result, we show that the gradient recovery method proposed in our previous work [H. Guo and X. Yang, J. Comput. Phys., 338 (20...

متن کامل

Superconvergence of immersed finite element methods for interface problems

In this article, we study superconvergence properties of immersed finite element methods for the one dimensional elliptic interface problem. Due to low global regularity of the solution, classical superconvergence phenomenon for finite element methods disappears unless the discontinuity of the coefficient is resolved by partition. We show that immersed finite element solutions inherit all desir...

متن کامل

Adaptive Finite Element Methods for Parabolic Problems

We continue our work on adaptive nite element methods with a study of time discretization of analytic semigroups. We prove optimal a priori and a posteriori error estimates for the discontinuous Galerkin method showing, in particular, that analytic semigroups allow long-time integration without error accumulation. 1. Introduction This paper is a continuation of the series of papers 1], 2], 3], ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Methods for Partial Differential Equations

سال: 2015

ISSN: 0749-159X

DOI: 10.1002/num.21973